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Abstract
Spin dynamics with the Landau–Lifshitz equation has provided topics for a wealth of research
endeavors. We introduce here a numerical integration method which explicitly uses the
precession motion of a spin about the local field, thus intrinsically conserving spin lengths, and
therefore allowing for relatively quick results for a large number of situations with varying
temperatures and couplings. This method is applied to the effect of long-range dipole–dipole
interactions in two-dimensional clusters of spins with nearest-neighbor XY-Heisenberg
exchange interactions on a square lattice at finite temperature. The structures thus obtained are
analyzed through orientational correlations functions. Magnon dispersion curves, different from
those of the standard Heisenberg model, are obtained and discussed. The number of vortices in
the system is discussed as a function of temperature and typical examples of vortex dynamics
are shown.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quasi-two-dimensional magnets of nanometric size, for
instance deposited on a substrate, or layered compounds with
negligible interlayer interactions, are of interest for quite a
number of applications such as high-density data storage.
Technical advances in producing such objects arise steadily
(e.g. [1, 2]) and experiments are now apt to provide reliable
data for such small systems (e.g. [3–13])

From a theoretical point of view, the dynamics of these
materials is of great interest as it is strongly nonlinear and
therefore unlikely to be easily addressed by analytical methods.
Nonlinear coherent excitations, namely vortices and anti-
vortices, can move around the sample and interact [14]. The
XY-Heisenberg model, which includes nearest-neighbor spin–
spin interactions, is well known as it yields a Kosterlitz–
Thouless phase transition in which vortex–anti-vortex pairs
break up above a critical temperature Tc. However, the
spin–spin interactions are quite often not limited to such
nearest-neighbor contributions but should also include long-

range (∝1/r 3) dipolar interactions. This involves, of course,
larger computational efforts but, for instance, Monte Carlo
simulations [15] have shown spontaneous structuration of the
spin orientations. A number of effects caused by dipolar
interactions in systems with periodic boundary conditions
are reviewed in [16]. Spin dynamics, because one has to
add contributions from over the whole sample for many
integration steps and because temperature must also be
introduced, is computationally demanding but, by using
efficient computational methods, one can hope to obtain not
only new structures but also the associated dynamics [17, 18].

Our purpose is to introduce our methods for numerical
integration of the Landau–Lifshitz classical spin dynamics
equations using the Rodrigues rotation matrix [21] at finite
temperature (section 2) and to validate these methods
(section 3) by comparing with literature results our own
results on the XY-Heisenberg model on a square lattice. In
section 4, we include dipolar interactions. Their overall
effect on structure, specifically correlation functions and elastic
scattering functions, are shown and discussed. Computation
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of dispersion curves yields the dynamics at a microscopic
level. We also show thermal activation of vortices and their
dynamics.

2. Model and numerical resolution

2.1. Ingredients of the model

We solve the Landau–Lifshitz equations for a finite square
sample with a square lattice in the Heisenberg model and add
long-range dipole–dipole interactions. The Landau–Lifshitz
equations of motion are

ṡi = −si × Hi , ∀i ∈ [1, n] (1)

where si stands for spin i with the constraint that the lengths of
all spins remain constant:

|si | = 1, ∀i, ∀t . (2)

This ‘constraint’ is intrinsic to equation (1) so it is not really
a constraint in the mathematical sense: however, a numerical
integration scheme may very well not meet this requirement.

The local field Hi on spin si is

Hi = −
∑

j
neighbour(i)

Js j + d
∑

j
( j �=i)

(
s j − 3

s j · ri j

|ri j |2 ri j

)
1

|ri j |3 (3)

where the first term on the right-hand side is the nearest-
neighbor Heisenberg interaction with

J =
⎛

⎝
Jx 0 0
0 Jy 0
0 0 Jz

⎞

⎠

and with Jx = Jy = 1. The out-of-plane coefficient Jz

can be set at will: in this paper Jz = 0, i.e. we consider a
Heisenberg-XY model that yields the well-known Kosterlitz–
Thouless phase transition [19, 20]: in its static version, this
model does not allow spins to have a component normal to
the plane, but since the dynamics is simulated here, the sz

component of the spins is needed to let the motions fully
develop. It should be noted that, despite the possibility for
the spins to point out of the plane, this is a strictly single-
layer system, not a 3D model in the limit of vanishing
thickness.

The second term on the right-hand side of equation (3)
is the dipole–dipole interaction, the strength of which is
determined by d , and ri j = r j − ri , ri being the position of
spin i .

2.2. Numerical integration of the precession motion

Quite a number of methods can be used to solve the set of
equations (1): established procedures are described in, for
example, [17]. Since we deviate from the standard, we go back
to elementary considerations: the explicit Euler integration
scheme yields, for a time integration step δt :

si (t + δt) = si (t) + ṡi(t)δt .

However

|si(t + δt)|2 = |si(t) + ṡi(t) δt|2
= |si(t)|2 + 2si(t) · ṡi(t) δt + |ṡi(t)δt|2
= |si(t)|2 + |ṡi(t)δt|2

results in a systematic and unphysical increase of |si (t)| with
time. This can be addressed by rescaling si(t) at every
step, a rather unsatisfactory procedure, however. The fourth-
order Runge–Kutta integration scheme does four estimates of
the derivatives, but some easy, albeit dull, calculations show
that, although better than the Euler scheme, it also yields a
systematic drift of |si(t)|2.

The alternative is to avoid blindfolded integration of the
equations of motion by noting that the instantaneous motion
of a spin is a precession about the instantaneous local field
Hi(t). This, as pointed out in [22] where similar procedures
are used, has the additional advantage that it does not require
the precession angle to be small, but only for Hi to be slowly
varying: should the local field remain constant with time,
the time step δt could be chosen arbitrarily large. The time
step thus depends on the characteristic time for the local field
fluctuations. The precession can be explicitly carried out using
the Rodrigues equation (see, for instance, [21]) that allows
us to compute the rotation of a vector about another arbitrary
vector:

si (t + δt) = Ri (t)si (t) (4)

where the rotation matrix is

Ri(t) =⎛

⎝
h2

x u + cos ω hx hyu − hz sin ω hx hzu + hy sin ω

hx hyu + hz sin ω h2
yu + cos ω hyhzu − hx sin ω

hx hzu − hy sin ω hyhzu + hx sin ω h2
z u + cos ω

⎞

⎠

with u = 1 − cos ω and hx , hy , hz are the coordinates of
the unit vector h = Hi/|Hi | which is parallel to the local
field and the precession angle ω = |Hi |δt . The spin length is
thus intrinsically conserved to numerical precision, as it should
following equation (1). Reference [22] implements, as being
more efficient, quaternions instead of a full rotation matrix,
since a quaternion has only four components instead of nine:
however, in our problem, since most of the computation time
is taken by the dipolar interactions, the improvement should be
marginal.

However, straightforward integration via equation (4)
proves unreliable or would require unreasonably short time
steps. An integration method inspired by the so-called
‘improved Euler method’ (or ‘Heun’s method’ for ordinary
differential equations, similar to a second-order Runge–Kutta
method, based on an estimate of the derivatives at both ends of
the integration step) is known to be efficient for multiplicative
noise problems [17] and allows much better integration at the
cost of two field computations per time step instead of one. We
first compute as before a ‘predicted’ set of spins at time t + δt :

sp
i (t + δt) = Ri (t)si(t).

These predicted spins yield a new ‘predicted’ field estimate
Hp

i ({sp
j (t + δt)}) at the end of the time step t + δt . The

‘corrected’ field used to compute the corrected rotation matrix
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Rc
i (t+ δt

2 ) estimated in the middle of the integration step is now
the average of the fields at both ends of the integration step:

Hc
i

(
t + δt

2

)
= Hi(t) + Hp

i (t + δt)

2

and

si (t + δt) = Rc
i

(
t + δt

2

)
si(t).

We may now expect both quick and stable integration of
equation (1).

2.3. Dipole–dipole interaction

The most computationally demanding part in such simulations
is the dipole–dipole interaction term in equation (3). For small
samples, it can be done by direct summation, but using the
convolution theorem and fast Fourier transforms [17] greatly
improves speed. In the case of a 2D square lattice, the position
of spin i is ri = (ki a, �i a), where a is the lattice constant and
the dipolar field on spin i

Hdip
i = d

∑

j
( j �=i)

(
s j − 3a

sx j (k j − ki) + sy j(� j − �i )

|ri j |2 ri j

)
1

|ri j |3

where |ri j | = a
√

(k j − ki)2 + (� j − �i)2. This can be seen as
the convolution of si (or equivalently sk�) with the following
matrix:

Dk� = d

a3(k2 + �2)
3
2

⎛
⎜⎝

1 − 3 k2

k2+�2 −3 k�
k2+�2 0

−3 k�
k2+�2 1 − 3 �2

k2+�2 0
0 0 1

⎞
⎟⎠ .

This matrix and its two-dimensional Fourier transform can be
computed beforehand.

The convolution itself is straightforward using FFTs and
zero padding for a finite sample [24]: it is noteworthy that,
since the spin distribution is discrete, the numerical discrete
Fourier transform introduces no additional approximation.

2.4. Temperature control

We use Langevin dynamics to introduce temperature,
following [23] and [14] which are analogous. The Langevin
‘force’ appears as a random or thermal field Hth

i with normal
distribution, zero mean and variance

〈(Hth
i )2〉 = 2αkBT (5)

where α is a damping coefficient, kB is Boltzmann’s constant
(taken to be 1 in reduced units) and T is the temperature. The
thermal field is added to Hi because spin si ‘feels’ the thermal
noise only via the local field. The equations of motion (1) are
thus modified:

ṡi = − si × H′
i + αsi × (si × H′

i)

1 + α2
(6)

with
H′

i = Hi + Hth
i .

This is easily adapted to the Landau–Lifshitz equation in the
Rodrigues formulation, as (6) can be rewritten as

ṡi = −si × Heff
i (7)

with

Heff
i = H′

i + αsi × H′
i

1 + α2
.

The damping parameter α controls the speed at which the
system relaxes towards equilibrium after a temperature change
but, if chosen small enough, should have no other effect.

2.5. Technical details

The practical implementation of the above methods requires
some care, as there is a potential contradiction between an
integration scheme which is meant mainly for a slowly varying
local field and the thermal field which must change randomly
for every integration step. This could lead one to believe
that the benefit of the slow variations is thus lost so that the
only advantage would remain in the intrinsic conservation of
spin lengths. This, however, is misleading: the time step
δt is determined by the dynamics of the system, not thermal
noise; first, the time step is determined, then only it must be
explicitly included in the way the random field is generated,
not the other way around. Namely, we use the standard Box–
Muller method (e.g. [24]) for random numbers with Gaussian
distribution and unit deviation. The numbers thus obtained
should be multiplied by the standard deviation

√
2αkBT for the

thermal field values (equation (5)), but time discretization must
be taken into account. Indeed, a given set of random numbers
at time t will ‘last’ for a time step δt ; since their standard
deviation is one, they must be multiplied by a factor γ and

〈(Hth
i )

2〉 = γ 2δt

since the thermodynamic average is taken for a finite duration.
The random numbers from the Box–Muller algorithm thus

have to be multiplied by a factor γ =
√

2αkB T
δt . This means that,

in practice, we may increase the time step δt if we decrease the
Langevin term. The limit is that the timescale of the random
field fluctuations should be shorter than that of the dynamics,
so that the time step should be significantly shorter than, for
example, the shortest vibrational period, as is customary in
dynamics simulations.

Each time step, however, requires, in Heun’s algorithm,
two evaluations of the field, including the random contribution:
one must use the same random numbers for both evaluations,
as using two different sets would result in partial averaging out
the fluctuations. The simulation of temperature effects would
thus be wrong with consequences immediately be visible in,
for instance, the transition temperature.

Finally, although [22] tends to oppose rotational matrix
type algorithms and higher-order schemes such as Runge–
Kutta (implicitly in a direct type integration), we show that one
may very well use higher-order methods (here Heun) with the
rotational matrix combining the advantages of both.
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Figure 1. In-plane orientational correlation function (equation (8))
for a 128 × 128 sample, 0.1 � T � 1.0 and d = 0. Scales are
logarithmic so that power laws appear as straight lines. The power
law a r η was fitted to the T = 0.7 line with a = 0.59 and
η = −0.277 and the exponential law A e− r

ξ was fitted to the T = 0.9
curve with A = 0.51 and ξ = 2.61.

3. Validation

The method was checked for cases for which the results are
known, namely without dipolar interactions (d = 0). A
Kosterlitz–Thouless phase transition, in which the in-plane
magnetization vanishes, is expected at T = 0.700(5) [25].
For Jz = 0, the magnon dispersion function in an infinite
system [26] is ω = 4J | sin q

2 | for T = 0 with wavevector
q in the x or y direction [27]: the shortest period is therefore
expected at τ ∼ 2π

ω0
∼ 1.57. An integration time step δt of 0.02

is thus adequate. The damping was chosen as α = 0.0005. The
sample is a 64 × 64 square lattice in the (x, y) plane with free
boundary conditions.

Both during the validation procedure and later, the initial
conditions were chosen as a highly disordered configuration;
then, for each set of parameters (T , α, d), one or several
stabilization pre-runs were performed until the energy of
the system was well stabilized: simulations with different
histories, i.e. different stabilization sequences and dampings,
were tested to yield the same results. Energy fluctuations
about the average were checked to be symmetric. Finally a
production run was done with the same parameters in order
to compute dispersion curves, vortex trajectories and other
quantities of interest in a stable sample. The final state
of the production run was compared with its initial state.
Computation was done on a cluster of computers allowing for
the testing of a number of parameter sets simultaneously.

3.1. Magnetization

The in-plane magnetization

M‖ =
(

1

n

∑

�

(s2
x�

+ s2
y�
)

) 1
2

where sx�
and sy�

are the x and y components of spin �,
decreases from ±1 for T = 0 to almost 0 for T = 1, with
a steeper slope close to T = 0.7. For a 128 × 128 sample,

Table 1. Exponent η of the power law fitted to c(r) (equation (8)
and figure 1) as a function of temperature for T � 0.7. The values
obtained close to the transition temperature are to be taken with
caution as they depend rather strongly on the r range chosen for the
fit (see, e.g., T = 0.7 in figure 1). Reference [25] (table III) gives
η = −0.160 for T = 0.6 and −0.248 for T = 0.7. The function
η0 exp T

T0
was fitted to the data of this table, yielding parameters

η0 = −0.013 ± 0.002 and T0 = 0.23 ± 0.02. Parameter η0 can be
understood as η (T = 0), whereas T0 sets the relevant temperature
scale.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η −0.018 −0.034 −0.058 −0.078 −0.112 −0.151 −0.277

the transition shows better: the smoothing of the expected
Kosterlitz–Thouless transition is a finite-size effect.

According to the Mermin–Wagner theorem the in-plane
magnetization should vanish in the thermodynamic limit,
because the magnons destroy all long-range correlations in a
2D system with a continuous symmetry. However, our sample
is too small for this to be seen directly, hence the non-zero
magnetization. Indeed, the Kosterlitz–Thouless transition is
characterized by a change in the decay of the orientational
correlations: a power law arη below transition temperature
and an exponential law A e− r

ξ above. We have thus computed
(in the larger 128 × 128 sample) the in-plane orientational
correlation function:

c(r) = 1

m(r)

∑

i, j, |ri j |=r

s‖
i · s‖

j (8)

where s‖
i is the in-plane component of spin i and m(r) is the

number of spin pairs at distance r . Figure 1 shows the result:
the power law appears as straight lines with logarithmic scales
for T < Tc; the decrease is much quicker above Tc (figure 1
plotted with a semi-log scale, instead of log–log here, yields
an approximately straight line for T > 0.7 compatible with
an exponential). One expects η = −1/4 at the transition
temperature using periodic boundary conditions [25] and the fit
in figure 1 yields −0.277 for T = 0.7; at lower temperatures
the decay is even much weaker (table 1). The change in
behavior occurs gradually as temperature increases: in figure 1,
see, for example, T = 0.7 where the power law fits reasonably
well only until r � 30. For T = 0.9 the exponential fit is
far from perfect with a reminiscence of a weaker decay for
r � 10. The T = 0.8 line shows an intermediate situation.
This gradual change, instead of a sharp transition, is again a
finite-size effect.

In any case, the very weak decay of the orientational
correlations for T < 0.7 accounts for the apparent
contradiction with the Mermin–Wagner theorem, especially for
the smaller 64 × 64 sample for which such a weak decay is
barely visible.

3.2. Elastic scattering

Although the system is of finite and relatively small size,
in order to observe global structural properties and to make

4



J. Phys.: Condens. Matter 21 (2009) 336005 Ph Depondt and F G Mertens

Figure 2. Polarization as seen by the three dynamic scattering
functions (in this example, q is parallel to x: the expressions given in
the text use the fact that the x and y axes are equivalent and add the
corresponding terms). For the in-plane longitudinal, the spin is
normal to the wavevector and spin motion parallel to it; for the
transverse, the spin lies parallel to the wavevector and the motion is
in-plane and normal to it; finally, for the out-of-plane, the spin
orientation is unimportant but the motion is normal to the plane.

a connection with possible experiments, the usual static
scattering functions can be computed:

|Sγ (q)|2 = ∣∣∑

�

sγ�
eiq·r�

∣∣2

where γ = x , y or z, q is the wavevector in the (x, y) plane,
sx�

, sy�
, sz�

are the components of s� and r� their positions.
Without a dipolar term, for temperatures below the

transition, the elastic scattering is simple: a strong central peak
for the in-plane contributions is obtained and only noise for
the out-of-plane contribution. Above the transition, the central
peak disappears.

3.3. Dispersion curves

In order to simulate a so-to-say ‘generic’ inelastic scattering
experiment and using elementary symmetry, three dynamic
scattering functions were obtained: in-plane longitudinal
(called L in the following) averaged over the equivalent (1, 0)

and (0, 1) directions, in-plane transverse (T) averaged, and out-
of-plane (Z), also averaged, i.e.

(L) |SL(q, ω)|2 =
∣∣∣∣
∫ ∑

�

(sx�
eiqrx� + sy�

eiqry� )eiωt dt

∣∣∣∣
2

(T) |ST(q, ω)|2 =
∣∣∣∣
∫ ∑

�

(sx�
eiqry� + sy�

eiqrx� )eiωt dt

∣∣∣∣
2

(Z) |Sz(q, ω)|2 =
∣∣∣∣
∫ ∑

�

(sz�
eiqrx� + sz�

eiqry� )eiωt dt

∣∣∣∣
2

where q is the (scalar) wavenumber, and rx�
and ry�

are the
components of the spin positions. These three scattering
functions are, of course, not independent as s2

x�
+ s2

y�
+ s2

z�
= 1.

Since most of the spins lie mainly in-plane, SL(q, ω)

is essentially sensitive to the motion of spins lying
perpendicularly to the wavevector and oscillating about the
vertical axis; ST(q, ω) is sensitive to the motion of spins lying
parallel to the wavevector and also oscillating about the z axis,
whereas Sz(q, ω) sees spins that oscillate about a horizontal
axis (figure 2).

Figure 3 shows the L dispersion curve for T = 0.1 in the
ordered phase: the zone-boundary frequency is slightly below
ω = 4, as should be expected; this frequency decreases as
temperature increases. A lower-frequency branch also shows,
near the zone boundary, more clearly in the out-of-plane Z
curve; this branch can be attributed to ‘surface’ modes, for
which the spins have fewer neighbors, and therefore weaker
coupling and lower frequency.

We may now introduce dipolar interactions and analyze
results with the same methods. In this paper, we restrict our
analysis to the case d = 0.2, a value chosen large enough for
the dipolar interactions to show clearly.

4. Results with dipolar interactions

4.1. Structure for d = 0.2

4.1.1. Snapshots and correlations in real space. We first
show several configurations for d = 0.2 and T ∈ [0.1, 1]
(figure 4) after relaxation. These snapshots, taken at different
temperatures, show a central vortex at low temperatures.

The central vortex configuration is quite standard;
however, in most cases it is accompanied by an out-of-plane
magnetization component at the core of the vortex (both
through simulations, e.g. [18], and experiments, e.g. [28])
which is absent in our case. While the vortex configuration

Figure 3. In-plane longitudinal (left) and out-of-plane (right) dispersion curves for d = 0 and T = 0.1. The q units are reduced, i.e. the
Brillouin zone boundary is at q = 0.5, not π/a. Note that the intensity color scale is logarithmic.
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Figure 4. In-plane configurations for d = 0.2 and increasing temperature. A central vortex is visible at low temperatures and disappears when
T ∼ 0.7. Bottom right: model for orientational correlation function with w = 0.62 (see text, section 4.1.1).

is energetically favorable for the dipole–dipole interaction
because of the closed loops it involves, it is energetically costly
for the Heisenberg interaction because of the large spin–spin
angles at the vortex core. In an isotropic Heisenberg model,
with Jz = 1, the cost of a vortex can be partially compensated
for by out-of-plane spin orientations that will effectively reduce
spin–spin angles, but in the anisotropic X–Y model with Jz =
0, the out-of-plane orientations are also energetically costly
and do not occur, at least for d = 0.2.

The central vortex disappears when temperature increases
above approximately T = 0.7. For T = 0.1, the fourfold
symmetry of the sample plays a visible role, as the spins tend
to lie parallel to each side of the square with a relatively
sharp orientation change on each diagonal, whereas for, say,
T = 0.5, this is not as clear although the central vortex
remains distinguishable. However, ‘processionary caterpillar’-
like configurations in which the spins tend to sit in sinuous
lines remain even at high temperature, the lines becoming more
tormented and shorter with increasing temperature.

The corresponding in-plane orientational correlation
functions are shown in figure 5. For distances larger than half
of the size of the sample, the correlation function is negative
which is consistent with figure 4. This feature decreases
rapidly for T > 0.7: there is a visible gap between the T = 0.7
(yellow line pointed at by the T = 0.7 arrow in figure 5)
and the T = 0.8 lines (black dashed line) for r ∼ 64. The
apparently peculiar behavior for T = 0.2 (blue line) will be
discussed with figure 12 in section 4.2.2.

If one considers the T = 0.1 configuration of figure 4, one
may, as a first crude representation, divide the square sample

into four equal sectors in which the spins are parallel to each
other and to the closest edge of the square, whereas spins from
neighboring sectors are orthogonal. However, the transitions
from one sector to another should not be sharp, so we must
superimpose on this structure a continuous rotation of spins
about the middle of the sample, i.e.

s(r) = ez × r

|r| .

So, if we give weight w to the rotation and 1 − w to the
four-sector model, we obtain a configuration of which the
orientational correlation function may be computed in the same
way as for figure 5: the results are compared in figure 6 with
weight w = 0.62 (w = 0 yields a straight line: c(r) =
1 − 2r/ l, where l is the size of the sample, 64 here. Increasing
w increases the double curvature).

This description is reasonably adequate for low tempera-
tures but, as temperature increases, the sinuosity of the caterpil-
lar lines increases and induces an additional short-range decay
of the correlation function (see T = 0.8, 0.9 and 1.0 for r < 8
in figure 5).

4.1.2. Elastic scattering. A typical elastic scattering |Sx(q)|2
is shown in figure 7. |Sx(q = 0)|2 naturally vanishes as
the overall magnetization Mx = ∑

� Sx,� vanishes because of
symmetry. The two peaks should be situated at δq = 2π

32 � 0.2
from the center which seems to be the case, given the resolution
of the figure which is also δq , set by the size of the sample.
|Sy(q)|2 is quite similar, whereas |Sz(q)|2 only shows noise,

6
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Figure 5. In-plane orientational correlation function c(r)
(equation (8)) for d = 0.2 and for temperatures T ∈ [0.1, 1].

0 10 20 30 40 50 60
r

Model
T=0.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6. In-plane orientational correlation function for d = 0.2 and
for temperatures T = 0.1 (green points) and model for w = 0.62
(red line). (see text, section 4.1.1).

so no out-of-plane structure is observed as pointed out in
section 4.1.1.

4.2. Dynamics for d = 0.2

4.2.1. Dispersion curves. Figure 8 shows the dispersion
curves for d = 0.2 and T = 0.1.

The in-plane longitudinal curve corresponds to an
exploration in reciprocal space along the qx axis of figure 7,
whereas the transverse is along the qy axis.

Several differences with the Heisenberg model without
dipolar interaction can be noted.

(i) For q = 0 the frequency does not decrease to zero.
Clearly, a uniform rotation of all spins will not change
the Heisenberg interaction, hence the usual zero-frequency
mode in that case (figure 3), but the dipolar term does
change, thus giving a frequency gap. This is consistent
with the absence of a central peak in figure 7.

Figure 7. Elastic scattering function |Sx (q)|2 for d = 0.2 and
T = 0.1. The intensity color scale is logarithmic.

(ii) The above observation could be questioned for the
transverse mode: however, the elastic peaks along qy in
figure 7 are intrinsically very close to the zone center,
and clearly orders of magnitude stronger than inelastic
peaks: some spilling into the inelastic scattering function
is therefore to be expected.

(iii) Unsurprisingly, the zone-boundary frequency is higher
than in the pure Heisenberg model.

(iv) The transverse mode is at lower frequencies than the
longitudinal one.

The low-frequency Brillouin zone center of the dispersion
curve shows some structure (figure 9) but the main effect
of temperature is to increase intensity in the zone-center
frequency gap: this can be connected to the vortex motion (see
section 4.3.1).

4.2.2. Vortices. We have computed vortex positions with
time: this can be done by obtaining orientations ϕi of the four
spins that surround a given unit cell of the lattice (figures 10
and 11) and computing δϕi = ϕi+1 − ϕi , δϕi ∈ [−π, π], i ∈
[1, 4]. The sum ϕt = ∑4

i=1 δϕi yields the overall rotation
about the square: if that rotation is equal to 2π , a vortex is
detected on that square, while if it is equal to −2π , then it is
an anti-vortex; otherwise ϕt = 0. If a vortex or an anti-vortex
is found, the (x, y) coordinates of the unit cell are then saved
along with time, allowing for a 3D plot (figure 12) to follow
vortex trajectories with time.

The lowest temperature graph (T = 0.1) confirms
the central vortex structure, but also shows that this vortex
undergoes some motion. T = 0.2 and 0.3 show a two-vortex
structure (vortex and anti-vortex): however, the T = 0.3
graph shows the collapse of a lateral vortex–anti-vortex pair
(the vortex—in green—is partially visible behind the central
vortex—also green—while the anti-vortex is red). This means
that the single central vortex structure seems to be stable but
that a small number of vortices can remain a relatively long

7
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Figure 8. Dispersion curves for d = 0.2 and T = 0.1. In-plane longitudinal (left), in-plane transverse (right) and out-of-plane (bottom).
Logarithmic color scale.

Figure 9. Effect of temperature on the low-frequency Brillouin zone-center part of the in-plane longitudinal dispersion curve. T = 0.1 (left)
and T = 0.5 (right).

time before disappearing with a small energy gain (from −4.19
to −4.20 in that specific case, not significantly above thermal
fluctuations despite the fact that they are not close to each
other). This also explains the odd behavior of the T = 0.2
orientational correlation function in figure 5. The energy cost
of a vortex–anti-vortex pair in addition to the central vortex is
thus weak. The creation of such a pair is also relatively easy, as
can be observed at slightly higher temperatures (T = 0.5 and
0.6). Above T = 0.7, the vortex density increases rapidly.

Table 2 gives a count of the detected vortices averaged
over time: non-integers mean that vortices do not always last

for the entire simulation. The difference in numbers between
vortices and anti-vortices is usually one, meaning we have pairs
in addition to a central vortex (the exception being T = 0.2
with a single pair): at higher temperatures this could not
be seen in figure 12 because of the high density of vortices
cluttering the graph: however, the central vortex does seem to
remain. Again, the sharp increase of the number of vortices
above T = 0.7 can be noted: however, it is compatible
with a simple thermally activated process as described by an
Arrhenius law.

8



J. Phys.: Condens. Matter 21 (2009) 336005 Ph Depondt and F G Mertens

Figure 10. Vortex search procedure: one explores, for instance
counter-clockwise, the orientations of the four spins that surround a
unit cell of the square lattice and computes the angular differences
ϕi+1 − ϕi of two consecutive spins. The sum of these differences
should be equal to zero except if a complete rotation was performed:
if it is equal to 2π a vortex is detected, while if it is −2π , then it is an
anti-vortex.

Figure 11. Examples of a vortex and an anti-vortex as obtained from
the procedure shown in figure 10. The curved arrows give an idea of
what they look like from a distance.

4.3. Vortex motion

4.3.1. On thermalized configurations. Figure 12 shows
that the central vortex undergoes motion and that vortex–anti-
vortex pairs are created and annihilated with time. The lifetime
of these pairs is short with respect to the timescale of the
figure. The central vortex moves randomly, but never far from
the middle of the sample. This motion is relatively slow but
does not display much structure in the frequency domain. It
shows in the dispersion curve (figure 9) as a strong increase
with temperature of the low-frequency Brillouin zone-center
part of the dispersion curve. The out-of-plane dispersion curve
(figure 13) is not sensitive to this effect since the vortex motion
is mainly in-plane: this supports our interpretation. The effect
of temperature is thus not so much to change the dynamics
of the spin system (although the slope of the dispersion curve
does change slightly) but to increase the number of vortices and
therefore to enhance the low-frequency long-range motion.

In figure 9 (left), frequency 0.6 for q ∼ 0 is the frequency
associated with overall rotation of all spins in the sample,
assuming that the motion of the central vortex can be neglected

Table 2. Vortex and anti-vortex count for d = 0.2: number of
vortices counted for each temperature (figure 12) and averaged over
time. A comparison with an Arrhenius law is given on the last line.

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vortices 1 1 1.16 1 1.09 1.69 4.4 14.7 36.8 96.3
Anti-vortices 0 1 0.16 0 0.09 0.69 3.4 13.8 35.8 95.2
105e−7/T 0.08 0.86 4.5 15.8 41.9 91.2

as a first approximation. Now, temperature excites modes at
lower frequencies which can be understood as spin rotations
connected with the small energies involved with vortex–anti-
vortex creation and annihilation processes: this involves a
rearrangement of a relatively large number of spins and can
hardly be considered as a local effect, hence its manifestation
mainly in the neighborhood of the Brillouin zone center.

The time Fourier transform of the distance of a vortex
from the middle of the sample was computed for d = 0.2 and
T = 0.1 (in a single-vortex configuration as in figure 12) and
the corresponding spectral intensity plotted against frequency
(figure 14). For ω > ωth = 10−2 the decay is a power law
aωp with exponent p = −2, meaning the motion is a standard
memoryless drunkard’s walk. For lower frequencies, the decay
is slower, with an exponent approximately q ∈ [−0.2, 0]. The
threshold frequency ωth = 10−2 yields a characteristic time of
about 100 time units.

4.3.2. ‘Custom-made’ initial configurations and relaxation.
All previous results were obtained from arbitrary and highly
disordered configurations which were stabilized at a given
temperature, the relaxation process itself being ignored.
Indeed, we can expect the single central vortex structure to
be the equilibrium configuration, because firstly the dipolar
interaction favors structures in which the spins tend to form
loops, and secondly the free boundary conditions favor
situations in which the spins at the edge remain parallel to
the edge. However, figure 12 shows situations which are
different, for which this relaxation process may be questioned
(e.g. T = 0.2 and 0.3). One may then prepare ‘custom-made’,
ideal, initial configurations and observe the relaxation itself
through vortex trajectories.

Figure 15 shows a two-vortex initial configuration.
Relaxation was performed at relatively low temperature (T =
0.1) in order to prevent perturbations by vortex–anti-vortex
creations and annihilations. One observes that the vortices
move away from each other with an effective repulsive
interaction: the leftmost vortex first moves to the left and then
back towards the middle, while the other vortex is expelled
from the sample. The first vortex then gradually settles
in the middle of the sample with a characteristic time of
approximately 200 time units, which is of the same order
of magnitude of the inverse of the threshold frequency ωth

obtained in the previous section from figure 14.
Figure 16 shows the same with a vortex–anti-vortex pair:

this configuration seems quite stable as already could be
inferred from figure 12, T = 0.2, with no tendency to expel
either the vortex or the anti-vortex: the additional information
here, due to better time resolution, is that the vortex tends

9
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Figure 12. Vortices for d = 0.2 and increasing temperature. Time axis is vertical, the two others being the instantaneous positions of detected
vortices (green, or grey in print) and anti-vortices (red, or black in print). Note that the timescale is different on the top left graph (T = 0.1).

Figure 13. Low-frequency Brillouin zone-center part of the
out-of-plane dispersion curve for T = 0.9.

to settle in the middle of the sample, whereas the anti-vortex
moves to the side, although the initial configuration had them
both at an equal distance from the center.

An interesting process is shown in figure 17 in which the
initial configuration has two vortices and two anti-vortices. A
vortex and an anti-vortex merge and annihilate rapidly while
the two remaining relax towards a situation in which the vortex
lies in the middle of the sample and the anti-vortex closer to the
edge as in figure 16. This also shows the capability of vortices
to move around the sample quite a lot in order to seek some
equilibrium configuration.

Figure 14. Spectral intensity of the distance of a vortex from the
center of the sample for d = 0.2 and T = 0.1. The straight lines on
the log–log plot correspond to power laws. Power law 1 (green
dashed line) aωp was fitted for ω > 0.01 and power law 2 (blue dots)
bωq for ω < 0.01. The fits yield a = 23.2, p = −2, b = 85 × 103

and q = −0.1, the standard error however being 90% for q.

Now the single-vortex situation shown in figure 12 for
T = 0.1 yields an average energy of E = −4.628 with a
standard deviation σ = 0.003. The vortex–anti-vortex pair
configurations of figures 16 and 17 have energies of −4.60
or −4.61. This means that, since the energy difference is
significantly larger than the standard deviation, the single-
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Figure 15. ‘Custom-made’ initial configuration with two vortices with opposite chiralities (left) and vortex trajectories during relaxation at
T = 0.1 (right). One vortex is expelled while the other migrates to the middle of the cluster.
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Figure 16. Initial configuration with a vortex–anti-vortex pair (left), and trajectories during relaxation at T = 0.1 (right); the vortex is in
green, the anti-vortex in red.
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Figure 17. Vortex–anti-vortex annihilation followed by the
relaxation of the remaining vortices.

vortex configuration is clearly more stable, but this difference
is small (∼5σ ) and we can therefore expect, as in figure 12,
other configurations to remain even after a long stabilization
period.

5. Conclusion

We have replaced the straightforward integration of the
Landau–Lifshitz equation, which does not ensure spin length
conservation, with an explicit precession about the local field,
which does. This method was tested to produce the expected
Kosterlitz–Thouless transition with the correct orientational
correlation functions for the XY-Heisenberg model. Aside
from being intellectually more satisfying, explicit precession
allows reliable simulations without artificial corrections.

With dipole–dipole interactions, the structure and
dynamics, including vortex dynamics, of these spin systems
could then be thoroughly studied. The most frequently
observed structure for d = 0.2 and T ∈ [0.1, 0.7] is that
of a single central vortex with an overall rotation of spin
orientations about that central vortex. No structured out-of-
plane component was observed because of the anisotropy of the
XY-Heisenberg model. Vortex–anti-vortex pairs are metastable
with a small increase of energy and their number increases with
temperature following an Arrhenius law. The low temperature
in-plane orientational correlation functions are compatible with
an overall rotation of the spins about the central vortex and
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roughly parallel to the sample edges; at higher temperatures
the long-range correlations disappear with a jump for T � 0.7.

Dispersion curves were obtained showing the appearance
of a frequency gap at the zone center in all symmetries,
the transverse mode being lower in frequency than the
longitudinal: this shows clearly in the out-of-plane symmetry
in which both curves are visible.

The low-frequency, low-wavenumber dynamics as seen
in the dispersion curves is an indication that motion either
of the vortices themselves or of the inter-vortex domains is
present. Vortex motion could also be observed: ‘fast’ motion
is essentially of random-walk type, while ‘slow’ motion shows
a mainly flat spectral intensity, consistent with the fact that
a stable vortex remains at the center of the sample with
quick random motion in the center’s vicinity. Relaxation
processes from chosen ideal situations were obtained: the
single central vortex structure arises spontaneously while
two-vortex situations are unstable, one of the vortices being
expelled. Vortex–anti-vortex annihilation could be observed.
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